Topological edge states in a high-temperature superconductor FeSe/SrTiO3(001) film.

نویسندگان

  • Z F Wang
  • Huimin Zhang
  • Defa Liu
  • Chong Liu
  • Chenjia Tang
  • Canli Song
  • Yong Zhong
  • Junping Peng
  • Fangsen Li
  • Caina Nie
  • Lili Wang
  • X J Zhou
  • Xucun Ma
  • Q K Xue
  • Feng Liu
چکیده

Superconducting and topological states are two most intriguing quantum phenomena in solid materials. The entanglement of these two states, the topological superconducting state, will give rise to even more exotic quantum phenomena. While many materials are found to be either a superconductor or a topological insulator, it is very rare that both states exist in one material. Here, we demonstrate by first-principles theory as well as scanning tunnelling spectroscopy and angle-resolved photoemission spectroscopy experiments that the recently discovered 'two-dimensional (2D) superconductor' of single-layer FeSe also exhibits 1D topological edge states within an energy gap of ∼40 meV at the M point below the Fermi level. It is the first 2D material that supports both superconducting and topological states, offering an exciting opportunity to study 2D topological superconductors through the proximity effect.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Electronic evidence of an insulator-superconductor crossover in single-layer FeSe/SrTiO3 films.

In high-temperature cuprate superconductors, it is now generally agreed that superconductivity is realized by doping an antiferromagnetic Mott (charge transfer) insulator. The doping-induced insulator-to-superconductor transition has been widely observed in cuprates, which provides important information for understanding the superconductivity mechanism. In the iron-based superconductors, howeve...

متن کامل

Common electronic origin of superconductivity in (Li,Fe)OHFeSe bulk superconductor and single-layer FeSe/SrTiO3 films

The mechanism of high-temperature superconductivity in the iron-based superconductors remains an outstanding issue in condensed matter physics. The electronic structure plays an essential role in dictating superconductivity. Recent revelation of distinct electronic structure and high-temperature superconductivity in the single-layer FeSe/SrTiO3 films provides key information on the role of Ferm...

متن کامل

Antiferromagnetic FeSe monolayer on SrTiO3: The charge doping and electric field effects

By growing monolayer FeSe on SrTiO3(001) surface, researchers obtain the highest superconducting transition-temperature for iron-based superconductor. Here, we study the antiferromagnetic (AFM) checkerboard monolayer FeSe adsorbed on SrTiO3(001) surface. We show that the system has a considerable charge transfer from SrTiO3(001) substrate to FeSe monolayer, and so has a self-constructed electri...

متن کامل

Electronic structure and superconductivity of FeSe-related superconductors.

FeSe superconductors and their related systems have attracted much attention in the study of iron-based superconductors owing to their simple crystal structure and peculiar electronic and physical properties. The bulk FeSe superconductor has a superconducting transition temperature (Tc) of ~8 K and it can be dramatically enhanced to 37 K at high pressure. On the other hand, its cousin system, F...

متن کامل

Direct imaging of electron transfer and its influence on superconducting pairing at FeSe/SrTiO3 interface

The exact mechanism responsible for the significant enhancement of the superconducting transition temperature (Tc) of monolayer iron selenide (FeSe) films on SrTiO3 (STO) over that of bulk FeSe is an open issue. We present the results of a coordinated study of electrical transport, low temperature electron energy-loss spectroscopy (EELS), and high-angle annular dark-field scanning transmission ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nature materials

دوره 15 9  شماره 

صفحات  -

تاریخ انتشار 2016